Laser beam melting 3D printing of Ti6Al4V based porous structured dental implants: fabrication, biocompatibility analysis and photoelastic study
نویسندگان
چکیده
Fabricating Ti alloy based dental implants with defined porous scaffold structure is a promising strategy for improving the osteoinduction of implants. In this study, we use Laser Beam Melting (LBM) 3D printing technique to fabricate porous Ti6Al4V dental implant prototypes with three controlled pore sizes (200, 350 and 500 μm). The mechanical stress distribution in the surrounding bone tissue is characterized by photoelastography and associated finite element simulation. For in-vitro studies, experiments on implants' biocompatibility and osteogenic capability are conducted to evaluate the cellular response correlated to the porous structure. As the preliminary results, porous structured implants show a lower stress-shielding to the surrounding bone at the implant neck and a more densed distribution at the bottom site compared to the reference implant. From the cell proliferation tests and the immunofluorescence images, 350 and 500 μm pore sized implants demonstrate a better biocompatibility in terms of cell growth, migration and adhesion. Osteogenic genes expression of the 350 μm group is significantly increased alone with the ALP activity test. All these suggest that a pore size of 350 μm provides an optimal provides an optimal potential for improving the mechanical shielding to the surrounding bones and osteoinduction of the implant itself.
منابع مشابه
Free-Form-Fabricated Commercially Pure Ti and Ti6Al4V Porous Scaffolds Support the Growth of Human Embryonic Stem Cell-Derived Mesodermal Progenitors
Commercially-pure titanium (cp-Ti) and the titanium-aluminum-vanadium alloy (Ti6Al4V) are widely used as reconstructive implants for skeletal engineering applications, due to their good mechanical properties, biocompatibility and ability to integrate with the surrounding bone. Electron beam melting technology (EBM) allows the fabrication of customized implants with tailored mechanical propertie...
متن کاملFabrication of Porous Segments Using Ti-6Al-4V Chips for Orthopaedic Applications
Different methods have been evaluated for manufacturing the porous Ti6Al4V alloys according to decreasing stress shielding phenomenon and increasing mechanical compatibility between the metallic components and the host tissue. For this purpose, in this work Ti6Al4V alloy chips were pressed under 400 MPa pressure and then samples were categorized and heated into two groups at 1000 and 1150℃ unde...
متن کاملA Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting
Electron beam melting (EBM) and selective laser melting (SLM) are two advanced rapid prototyping manufacturing technologies capable of fabricating complex structures and geometric shapes from metallic materials using computer tomography (CT) and Computer-aided Design (CAD) data. Compared to traditional technologies used for metallic products, EBM and SLM alter the mechanical, physical and chemi...
متن کاملFabrication of Porous Segments Using Ti-6Al-4V Chips for Orthopaedic Applications
Different methods have been evaluated for manufacturing the porous Ti6Al4V alloys according to decreasing stress shielding phenomenon and increasing mechanical compatibility between the metallic components and the host tissue. For this purpose, in this work Ti6Al4V alloy chips were pressed under 400 MPa pressure and then samples were categorized and heated into two groups at 1000 and 1150℃ unde...
متن کاملEvaluation of Biological Properties of Electron Beam Melted Ti6Al4V Implant with Biomimetic Coating In Vitro and In Vivo
BACKGROUND High strength porous titanium implants are widely used for the reconstruction of craniofacial defects because of their similar mechanical properties to those of bone. The recent introduction of electron beam melting (EBM) technique allows a direct digitally enabled fabrication of patient specific porous titanium implants, whereas both their in vitro and in vivo biological performance...
متن کامل